芭乐视频下载官网大全_国产午夜亚洲精品第一区 _李美淑三级未删减版在线观看98_公车上乱j伦小说诱爱


首頁
產品系列
行業應用
渠道合作
新聞中心
研究院
投資者關系
技術支持
關于創澤
| En
 
  當前位置:首頁 > 新聞資訊 > 機器人知識 > 《視覺SLAM十四講》作者高翔:非結構化道路激光SLAM中的挑戰  
 

《視覺SLAM十四講》作者高翔:非結構化道路激光SLAM中的挑戰

來源:智東西      編輯:創澤      時間:2020/5/29      主題:其他   [加盟]

自動駕駛車輛通常都是預先建立地圖,然后利用此圖進行定位,所以真正的、完整的、高貴的SLAM只發生在第一次采集并生成地圖之后,后續就是如何用這些地圖進行定位導航的問題。另一方面,自動駕駛用的地圖和機器人的地圖。

低速自動駕駛車輛的地圖

乘用車,大家也了解,一年半載的肯定沒法實際上路,上了路還有一系列的法律法規問題,還有一堆的世(shi)界(shi)難(ju)題(keng)等著各位工程師去解決(tian keng)呢,所以這會兒我們也不需要多么著急(反正有更著急的人在)。

而對于低速車來說,相對安全,避不了障大不了先停在原地讓人先過,還顯得文明禮讓(我家的產品避障完全沒問題啊。。這兩年各種配送、清掃、挖礦之類的自動駕駛低速車會慢慢的抬頭,大家應該會漸漸看到一些功能和價格都能夠接受的產品。而我自己是做SLAM的,所以主要談談這類車上的SLAM問題。

和學術界平時說的SLAM不同,自動駕駛車輛通常都是預先建立地圖,然后利用此圖進行定位,所以真正的、完整的、高貴的SLAM只發生在第一次采集并生成地圖之后,后續就是如何用這些地圖進行定位導航的問題。另一方面,自動駕駛用的地圖和機器人的地圖,對,就是你平時見到的那種,ROS里的黑白灰圖,也會有點差別。

ROS里的占據柵格地圖,我喜歡叫它黑白灰圖

機器人用的柵格地圖,很顯然,主要表達何處有障礙物,何處是可通行的區域,此外就沒有了。它具有基礎的導航與定位功能,精度也不錯(厘米級),制作起來十分簡單,基本可以讓機器人自動生成。對于送餐掃地的室內機器人來說,這種地圖基本就夠用了。但是為什么自動駕駛不用這種圖呢?它和高精地圖有哪些差別呢?

一條很明顯的區別是:在室內,機器人可以去任意可以通過的地方,不會有太多阻攔。而對于自動駕駛來說,每條路都有對應的交通規則:有些地方只能靠右行駛,有些地方不能停車,十字路口還有復雜的通行規則。

智行者科技無人清掃消毒車蝸小白

室內機器人可以利用柵格地圖進行導航,但在室外可不能在十字路口上橫沖直撞。所以,在導航層面,室內與室外的機器人出現了明顯的區別。室內的導航可以基于柵格來實現諸如A*那樣的算法,但室外基本要依賴事先畫好的車道。如果你希望你的外賣機器人既能在室內取貨,又要跑到馬路上送到2公里外面的客戶家中,那么就得同時考慮這兩種地圖的使用方法了。所以你看,低速車輛是界于傳統移動機器人與乘用車之間的產物,它的地圖比兩邊現成產品都要復雜。

我們會用不同的術語來描述地圖的構建階段。大體來說,從一無所有的采集過程開始,我們會碰到兩個大階段:

1、SLAM階段:解決從原始傳感器數據開始,構建某種基礎地圖的過程(一般是三維點云或二維圖像、柵格);

2、標注階段:在SLAM結果基礎上進行人為標注,實現更精細的交通規則控制。

SLAM階段往往是自動的,而標注階段目前還主要是人工的,完美體現了“人工智能”相合作的過程。目前乘用車高精地圖生產主要成本是在標注階段,通常是一群人在在電腦前加班加點地趕著各種工程排期。顯然,這個標注過程的好壞直接影響地圖質量,一旦標錯就等著觀賞車輛各種怪異行為吧。

然而,我們也沒法完全實現標注過程的自動化,因為很多人為規則并不體現在場景數據里。比如公園里的草坪,物流車大概不能走上去,而灑水車大概就應該在草坪上行走,而我們無法通過點云或圖像識別出此類規則,給此類地圖帶來了很大的人工工作量。

比如下面這個點云圖,雖然結構上看不出來,但實際上中間一圈是一個草坪,正常情況下車輛是不能進去的。所以,只能通過人工來標注車輛的行駛區域,才能讓小車正確地導航。

標注過程通常是一些非常繁瑣的步驟,而且因為繁瑣所以價格還挺高。根據2019年的《高精地圖產業發展現狀及趨勢》,一公里高精地圖的成本費用還在幾千至幾萬元。采集車雖然貴但畢竟只有幾臺,計算機開一下程序也只需要一些電費,所以成本主要還是在標注上面。這里的商業化道路還是挺困難的,然而也沒什么辦法(攤手)。

問題低速車輛的SLAM

由于我個人是做SLAM的,咱們還是把主題回到SLAM上來。目前室外車輛的SLAM還是以多線激光為主。雖然激光SLAM原理上比較成熟,然而實際結合其他傳感器來SLAM,還是有一些問題的。學術界的論文總喜歡挑好看的結果來發表,而現實問題往往是骯臟的、動態的、復雜的,這一點,沒解決過實際問題的人可能感受不深。

低速車輛如果真正應用,那么地圖構建時間就不能太長。如果我們在意地圖質量的話,標注工作基本是省不了的,所以對SLAM端的要求就可以總結為:自動化、高可靠性,以及對復雜環境的適應能力(不需要現場人員調參)。這件事情看似簡單,但實際用來總有各種各樣的問題。

激光SLAM

激光SLAM的基本原理就是點云拼接,有些地方也叫注冊、配準,等等?梢岳弥鶢钗锏忍卣餍畔砥唇,也可以直接用點來拼接,總之這方面各種方法大同小異,區別不大。激光SLAM的開源項目也有很多,感興趣同學可以看看LOAM/Lego-Loam等經典的方案。

Lego-LOAM  Demo圖

 

當然,論文上的圖片肯定是美麗的,實際當中也肯定是會遇到問題的。如果只靠激光配準就可以把地圖生成出來,那這邊SLAM也就沒什么難度可言了。我們不妨來看看激光SLAM有什么實際問題。

1、點云拼接是個類似于里程計的過程,它們計算的是局部點云之間的相對運動關系。這個運動誤差會逐漸累計,直到地圖出現嚴重變形。其中,高度上的變形會比較明顯,你會發現地圖一端可能會“翹起”或“下沉”。

激光SLAM的累計誤差使得地圖高度出現錯誤,兩側對不上

2、點云拼接的結果依賴于現場的實際三維結構。在結構化道路中,基本可以期待地圖由中間的馬路與兩側的路牙、樹木、護欄組成;但在非結構化道路中,很難對場景結構有一個先驗的知識。它可以是普通馬路,也可能是人來人往的商業街,也可能是萬眾聚會的廣場……總之,你很容易看到激光失效的場景。

激光匹配在廣場或單側臺階等場景下會導致失效,原本直線前進的軌跡會出現扭曲情形,并使得遠處物體模糊

3、更常見的就是來回路段由于匹配失誤導致地圖出現重影,有些論文也稱為“鬼影”。這種現象出現的原因,是兩個激光點云看到了同樣的結構,但由于距離較遠,匹配算法沒法將它們完整匹配起來。

4、最后,純粹由激光匹配得到的地圖,沒有現實世界物理位置信息。如果缺少物理世界信息,那么你沒法按照點云圖把車輛導航到指定位置;如果有兩個激光點云時,也很難把它們完美地拼接起來。

所以,我們需要處理激光與其他傳感器的組合。在點云失效時,嘗試用其他傳感器進行補償;在點云出現累計誤差時,用其他傳感器來進行修復。

激光SLAM和GPS組合

室外自動駕駛車輛通常有一個GPS接收器,指示其物理世界位置。結合GPS信號,我們就可以構建帶有物理世界經緯度的地圖。這個物理坐標在某些業務中是很重要的,因為車輛很可能需要導航到另一個真實世界的建筑物中。相對的,純室內的小車就不需要這種坐標,因為它們只在一間或幾間屋里導航,而不必關心這間屋子在真實世界當中什么位置。

智行者科技無人清掃消毒車蝸小白

GPS的一大特點就是“看天吃飯”。信號好的時候它可以到達厘米級定位,可以直接使用差分GPS+IMU的結果來進行組合導航。這種做法在如今的無人車、無人機里還很常見。對于天天在高速公路上奔跑的乘用車來說,絕大部分情況下可以以GPS為主導;但是,對于園區里運營的小車,進個樹林穿個夾層都是稀松平常的,GPS“信號不好”比“信號良好”更加常見。你能夠接受無人車因為“信號不好”半路拋錨的情況嗎?

在公園、景區的道路上,小車會經常穿梭于樹林、橋梁之中。這些地形上GPS很有可能出現大范圍不可用的情形

GPS噪聲是個很有意思的模型。通常GPS接收器根據自身接收情況,會給出一個信號強弱的判斷。然而,由于著名的多徑效應,GPS也可能給出一個信號很強,但位置錯誤的數據。這就要求SLAM算法對各種信號下的GPS都有穩定的表現。在GPS好時,應該聽從GPS的軌跡走向;在GPS不好的區域,能夠正確識別并改進。

GPS信號良好的路段例子。左側:點云地圖;右側:軌跡圖。軌跡圖中紅色為優化后軌跡,藍色為GPS軌跡。由于GPS全程良好,優化軌跡與GPS重合。

GPS信號不佳的例子?梢钥吹接覀人{色軌跡在無規律跳動,但是點云仍需要正常構建。

 

GPS信號的不確定還會帶來一些實際的問題。例如,如果車輛開機時GPS信號不好,那么車輛如何確定自身的物理位置?它應該是開到一個開闊區域,等待GPS信號變好,還是以一種“不確定物理位置,但有相對位置”的狀態開始運行?

假設如此,那么運行一段時間后GPS信號變為正常,定位信息應該直接跳到GPS指向的物理位置嗎?這種跳變會不會對控制產生不良的影響?另一方面,在建圖時,我們通常需要按照物理位置來區分不同的地圖,例如公園北側和南側很可能使用兩個不同的地圖。如果GPS信號不好,車輛應該如何確定使用哪一張地圖?這些問題都需要一個實際的解決方案。

GPS的處理方式是室內外車輛SLAM的一個很大的不同點。這會讓SLAM的邏輯變得更加復雜。我們需要結合其他的傳感器位置來判斷GPS信號的有效性,這往往要用到一些全局軌跡的估計方法,而像卡爾曼濾波器這樣有時間順序的算法會受到干擾。

另外,如果我們還使用了基于位置的回環檢測算法,那么它會明顯受到GPS信號好壞的影響。一旦GPS信號變差,激光SLAM的性質就變為一個里程計,其累計誤差變大之后,基于位置的回環檢測算法就很可能失效。

激光SLAM的退化特性

激光SLAM存在各種失效情況,有些你甚至很難事先預料到,例如:

在廣場、機場等開闊區域,即使是多線激光,也只能看到幾圈地面上的點云。僅使用地面點云進行匹配,很可能在水平面上發生隨機移動。

在長隧道、單側墻、橋梁等場地中,激光匹配會存在一個方向上的額外自由度。也就是說,沿著隧道前進時,獲取到的激光點云是一樣的,使得匹配算法無法準確估計這個方向上的運動。類似地,如果機器繞著一個圈柱形物體運動時,也會發生這種情況。

在一些異形建筑面前,激光可能發生意想不到的失效情形。

這些結果被稱為激光的“退化”,也就是說,本來能夠估計6自由度的激光匹配算法,由于場景結構的限制,某幾個自由度上的運動無法估計。這時,就需要建圖算法來降低激光軌跡的權重,利用其他軌跡來補償激光的失效了。

位于長沙的梅溪湖藝術中心是令我印象深刻的地方(雖然我本人并沒有去過現場)。但在這個區域的中心,激光匹配就會非常不穩定,給出一些錯誤的結果

 

大型地圖的拼接與回環檢測

室外SLAM的另一個特點是:室內地圖通常有一個面積限制,例如大多家居面積都在200平方米以內;而室外地圖可能達到幾十萬平米,乘用車甚至可以建立城市公路級別的地圖。

智行者科技無人乘用車星驥系列

對于掃地機這些家用機器人,我們允許它自由地在室內探索,因為室內面積畢竟是有限的;而對于室外車輛,如果自由探索的話,很可能沿著一個方向出去就回不來了。這就要求室外高精地圖有一個事先的采集過程。

目前各家公司對高精地圖的采集方式并不一樣。乘用車通常需要駕駛員在采集區域內行駛固定圈數,然后把數據帶回數據中心進行解算。乘用車的數據量非常大,一般幾十GB至TB級別水平,其解算也需要大量計算資源。

而對于低速車,它們運動范圍受業務和電池限制,通常在幾十公里以內,適配時間在一兩天以內。而對更大的區域,往往進行分塊、分區的建圖方式。

對于較大的地圖,通常使用分段采集、建圖、拼接的方式

 

低速車輛由于業務變更較快,對地圖的構建時間和靈活性有一定的要求。例如,清掃車這一周可能在東區運行,下一周就可能在西區運行;蛘撸赡芤笤谝酝那鍜邊^域基礎上添加一塊新的區域。這種需求一方面要求地圖能夠以更快的速度進行構建,一方面也要求地圖能夠快速地進行拼接與合并。同時,由于場景的客觀通行限制,低速車輛有時候并不能“繞場景一整圈”,而必須一段一段地采集數據。

在這個數據中,我們先采集了橫向的道路,然后分別采集兩次縱向道路,最后進行合并

 

地圖合并算法可以自由設計。我們可以把兩個局部地圖視為固定不變的點云,然后使用簡單的ICP進行剛性拼接。如果局部地圖本身沒有畸變,這種做法的效果也挺不錯。但是,如果拼接地圖存在多個重疊區域,這種剛性拼接就可能導致“拼對了頭但拼錯了尾”的情況。所以,我們更傾向于借助類回環檢測與Pose Graph的方法,對兩條軌跡進行融合而非剛性拼接。

團隊溝通和其他問題

當然,現實當中還會存在算法之外的問題。畢竟大多數地方只有幾位算法工程師,而數據則來自全國各地成千上萬臺運營的小車。終端的運營人員也好,采集人員也好,大部分并不具備地圖定位的相關知識,往往不理解“怎樣才是科學的采圖軌跡”。這種溝通問題是我們日常工作中見到的最多的問題。

智行者科技無人物流配送車

由于場景的復雜性,建圖算法不可能保證100%的成功率。如果碰到一個全程缺少GPS的開闊、弱紋理、高動態場景,任何算法都無法完全保障。這聽著像是在抬杠,但是很遺憾的是,現實當中某些大型車庫、大型車站內部、高樓間商業街正屬于此類場景。這些場景中最容易出現的問題是由于GPS的缺失,地圖累計誤差過大,出現錯位或重影的情況。在這些情況中,我們就只能借助人工的方式來輔助建圖了。

在地圖出現明顯錯位情況下,我們利用可視化軟件,對融合軌跡進行人工干預,修復累計誤差,使地圖回到正確的情況

小結

以上我們談論了一部分低速自動駕駛車輛在建圖中碰到的實際問題。對于建圖算法的開發人員來說,能夠足不出戶看到全國各地的地圖,也是一件令人欣慰的事情。相信很多人也會享受這一過程,參與到地圖構建算法研發的過程中來吧。

雖然非結構化道路激光SLAM中的挑戰很多,但是在發現問題中去享受解決問題的快感,是一件能讓人很爽的事情,我將永遠樂此不疲。




圖像檢索入門、特征和案例

圖像檢索是計算機視覺中基礎的應用,可分為文字搜圖和以圖搜圖。借助于卷積神經網絡CNN強大的建模能力,圖像檢索的精度越發提高

如何加快解決數據產權問題

數據所有權方面,1原始數據屬于個人,2企業享有衍生數據所有權,3政府享有政府數據的歸屬權

戴瓊海院士:搭建腦科學與人工智能的橋梁

腦科學的發展將推動人工智能科學從感知人工智能到認知人工智能的跨越

“觸控一體化”的新型機械手指尖研究

機械手面臨的難點在于如何在柔性物體上施加可控的擠壓力,以及在非穩定狀況下確保精確、穩健的抓握與柔性指端操控

微信提出推薦中的深度反饋網絡,在“看一看”數據集上達到SOTA

DFN模型綜合使用了用戶的隱式正反饋(點擊行為)、隱式負反饋(曝光但未點擊的行為)以及顯式負反饋(點擊不感興趣按鈕行為)等信息

基于腦肌融合的軟體康復手研究

軟體機械手充分利用和發揮各種柔性材料的柔順性,及其非線性、粘彈性和遲滯特性等在軟體手運動和控制中潛在的“機械智能”作用,降低控制的復雜度,實現高靈活性、強適應性和良好交互性,在醫療康復領域有重要應用價值

情感分析技術:讓智能客服更懂人類情感

智能客服系統中人機結合的服務形式,從五個維度總結和介紹情感分析技術在智能客服系統中的應用場景,包括情感分析算法模型的原理及實際落地使用方式和效果分析

AI也會遭遇瓶頸 解析人工智能技術的存儲性能需求

AI人工智能技術需要構建強有力的IT基礎設施,人工智能的工作主要由采集、準備、訓練和推理四部分組成,每個部分需要讀寫不同類型的數據,工作負載也不盡相同,將給存儲設備帶來較大的挑戰。

自動化所提出神經元群體間側向交互的卷積脈沖神經網絡模型

基于梯度反向傳播的脈沖神經網絡(SNN)訓練方法逐漸興起。在這種訓練方法下,SNN能夠在保留神經元內部動力學的同時獲得較好的性能

基于激光雷達的SLAM(激光SLAM)研究

Cartographer跨平臺和傳感器配置,MC2SLAM實時激光里程計系統,LeGO-LOAM種輕量級和地面優化的激光雷達里程計和建圖方法,SUMA++開源的基于語義信息的激光雷達SLAM系統

學一個忘一個?人工智能遭遇“災難性遺忘”,克服“失憶”有何良策

人工智能為什么會產生“災難性遺忘”?目前,解決災難性遺忘的方案有哪些?難點在哪?來看看專家怎么說
 
資料獲取
新聞資訊
== 資訊 ==
» 人形機器人未來3-5年能夠實現產業化的方
» 導診服務機器人上崗門診大廳 助力醫院智慧
» 山東省青島市政府辦公廳發布《數字青島20
» 關于印發《青海省支持大數據產業發展政策措
» 全屋無主燈智能化規范
» 微波雷達傳感技術室內照明應用規范
» 人工智能研發運營體系(ML0ps)實踐指
» 四驅四轉移動機器人運動模型及應用分析
» 國內細分賽道企業在 AIGC 各應用場景
» 國內科技大廠布局生成式 AI,未來有望借
» AIGC領域相關初創公司及業務場景梳理
» ChatGPT 以 GPT+RLHF 模
» AIGC提升文字 圖片滲透率,視頻 直播
» AI商業化空間前景廣闊應用場景豐富
» AI 內容創作成本大幅降低且耗時更短 優
 
== 機器人推薦 ==
 
迎賓講解服務機器人

服務機器人(迎賓、講解、導診...)

智能消毒機器人

智能消毒機器人

機器人底盤

機器人底盤

 

商用機器人  Disinfection Robot   展廳機器人  智能垃圾站  輪式機器人底盤  迎賓機器人  移動機器人底盤  講解機器人  紫外線消毒機器人  大屏機器人  霧化消毒機器人  服務機器人底盤  智能送餐機器人  霧化消毒機  機器人OEM代工廠  消毒機器人排名  智能配送機器人  圖書館機器人  導引機器人  移動消毒機器人  導診機器人  迎賓接待機器人  前臺機器人  導覽機器人  酒店送物機器人  云跡科技潤機器人  云跡酒店機器人  智能導診機器人 
版權所有 © 創澤智能機器人集團股份有限公司     中國運營中心:北京·清華科技園九號樓5層     中國生產中心:山東日照太原路71號
銷售1:4006-935-088    銷售2:4006-937-088   客服電話: 4008-128-728